Back to Search Start Over

Towards forecast-based attribution of isolated extreme events: perturbed initial condition simulations of the Pacific Northwest heatwave

Authors :
Nicholas J. Leach
Chris Roberts
Tim Palmer
Myles R. Allen
Antje Weisheimer
Publication Year :
2022
Publisher :
Copernicus GmbH, 2022.

Abstract

Here we explore the use of “counterfactual” weather forecasts, using perturbed initial condition runs of a state-of-the-art high-resolution coupled ocean-atmosphere-sea-ice ensemble NWP system, for the attribution of extreme weather events to anthropogenic climate change. We use the “record-shattering” heatwave experienced by Western North America during summer 2021 as a case study - though our forecast-based approach is applicable to other events.Since we cannot make direct observations of a world without human influence on climate, all approaches to extreme event attribution involve some kind of modelling, either statistical or numerical. Both approaches struggle with the most extreme weather events, which are poorly represented in both observational records and the climate models normally used for attribution studies. Recognising the compromises involved, researchers have traditionally relied on comparing results from several different approaches to assess the robustness of conclusions. We argue that a better approach would be to use initialised numerical models that have demonstrated their ability to simulate the event in question through a successful forecast.This work represents a continuation of a previous EGU talk and published study (https://meetingorganizer.copernicus.org/EGU21/EGU21-5731.html & https://doi.org/10.1073/pnas.2112087118), in which we used demonstrably successful weather forecasts to estimate the direct impact of increased CO2 concentrations (one component, but not the entirety, of human influence) on the 2019 European winter heatwave. In the previous and current work we use the operational ECMWF ensemble prediction system. This state-of-the-art weather forecast system is run at a much higher resolution (Tco639 / 18km) than most climate model simulations - important as even small reductions in resolution often change the representation of extreme events in numerical models. Using a reliable forecast ensemble allows us to quantify the associated uncertainties in our attribution analyses.We have built on this work with the aim of providing a more complete estimate of the human influence on an isolated extreme event. In addition to the reduction of CO2 concentrations back to pre-industrial levels, we now also remove an estimate of the human influence on 3D ocean temperatures since the pre-industrial period from the initial state of the forecast model. These changes allow the model to provide a “counterfactual” picture of what an extreme event might have looked like if it had occurred before human influence on the climate.Using this perturbed initial condition approach, we produce counterfactual forecasts of the Pacific Northwest heatwave at the end of June 2021. This event broke records throughout Western North America, including a new Canadian high temperature record of 49.6°C, shattering the previous record by almost 5°C. The heatwave was driven by a combination of meteorological factors, including an omega block and water vapour transport at the synoptic scale, and high solar irradiation and subsidence at the meso-scale (research into the drivers is ongoing). Crucially, the event was well-predicted by weather forecast models over a week in advance.We estimate the human contribution to this exceptional heatwave by comparing our counterfactual forecasts to the operational forecasts that successfully predicted the event.

Details

Database :
OpenAIRE
Accession number :
edsair.doi...........b26d8395a28cc74d7b358a246f8cb889
Full Text :
https://doi.org/10.5194/egusphere-egu22-5949