Back to Search Start Over

Correlation of surface processes with characteristic sensing responses of PdO thin films to ethanol

Authors :
Cheng Yu Tsai
Fu-Ming Pan
Yi Sheng Chen
Jeng Han Wang
I. Kai Cheng
Source :
Applied Surface Science. 473:589-596
Publication Year :
2019
Publisher :
Elsevier BV, 2019.

Abstract

Gas sensing characteristics of PdO nanoflake thin films exposed to ethanol (EtOH) at temperatures below 250 °C was studied. The PdO thin film responses distinctly to 0.15 ppm EtOH in dry air at temperatures above 100 °C. A characteristic valley-shaped response feature develops in the early stage of the exposure to EtOH at 150 °C and above. Formation of the valley feature is a result of the combined effects of two types of surface processes, which successively modify the sensor conductance in the opposite way. Dehydrogenation of adsorbed EtOH induces reduction of preadsorbed oxygen anions and the PdO substrate, resulting in the drop of the conductance. On the other hand, subsequent adsorption of EtOH and oxygen on newly growing Pd nanoclusters, which develop due to the reduction of the PdO substrate, causes the increase in the conductance. The Pd nanoclusters can be later reoxidized in the EtOH gas mixture, thereby modifying the sensing behavior of the PdO sensor. X-ray photoelectron spectroscopy (XPS), diffusive reflectance infrared Fourier transform spectroscopy (DRIFTS) and temperature programmed desorption (TPD) were used to study adspecies and gaseous species formed in the EtOH gas sensing reactions. On the basis of the characteristic electrical response and chemical characterizations, we proposed the formation mechanism for the characteristic response feature.

Details

ISSN :
01694332
Volume :
473
Database :
OpenAIRE
Journal :
Applied Surface Science
Accession number :
edsair.doi...........b13f86fbd80e01d503c49d4497596a12
Full Text :
https://doi.org/10.1016/j.apsusc.2018.12.195