Back to Search Start Over

Systems analysis of plasma IgG intact N-glycopeptides from patients with chronic kidney diseases via EThcD-sceHCD-MS/MS

Authors :
Lijun Zhao
Jingqiu Cheng
Hao Yang
Changwei Wu
Fang Liu
Wei Cao
Yonghong Mao
Guisen Li
Shanshan Zheng
Yong Zhang
Source :
The Analyst. 146:7274-7283
Publication Year :
2021
Publisher :
Royal Society of Chemistry (RSC), 2021.

Abstract

Immunoglobulin G (IgG) molecules modulate an immune response. However, site-specific N-glycosylation signatures of plasma IgG in patients with chronic kidney disease (CKD) remain unclear. This study aimed to propose a novel method to explore the N-glycosylation pattern of IgG and to compare it with reported methods. We separated human plasma IgG from 58 healthy controls (HC) and 111 patients with CKD. Purified IgG molecules were digested by trypsin. Tryptic peptides without enrichment of intact N-glycopeptides were analyzed using a combination of electron-transfer/higher-energy collisional dissociation (EThcD) and stepped collision energy/higher-energy collisional dissociation (sceHCD) mass spectrometry (EThcD-sceHCD-MS/MS). This resulted in higher spectral quality, more informative fragment ions, higher Byonic score, and nearly twice the depth of intact N-glycopeptide identification than sceHCD or EThcD alone. Site-specific N-glycosylation mapping revealed that intact N-glycopeptides were differentially expressed in HC and CKD patients; thus, it can be a diagnostic tool. This study provides a method for the determination of glycosylation patterns in CKD and a framework for understanding the role of IgG in the pathophysiology of CKD. Data are available via ProteomeXchange with identifier PXD027174.

Details

ISSN :
13645528 and 00032654
Volume :
146
Database :
OpenAIRE
Journal :
The Analyst
Accession number :
edsair.doi...........b1132bd0b002ce990cbd14f3db3b25cf