Back to Search Start Over

Clumped Isotopes Link Older Carbon Substrates With Slower Rates of Methanogenesis in Northern Lakes

Authors :
John M. Eiler
Katherine S. Dawson
Ella Yanay
Patrick M. Crill
Max K. Lloyd
Katey M. Walter Anthony
Regina Gonzalez Moguel
Peter M. J. Douglas
Daniel A. Stolper
Alex L. Sessions
Martin Wik
Derek Smith
Source :
Geophysical Research Letters. 47
Publication Year :
2020
Publisher :
American Geophysical Union (AGU), 2020.

Abstract

The release of long‐stored carbon from thawed permafrost could fuel increased methanogenesis in northern lakes, but it remains unclear whether old carbon substrates released from permafrost are metabolized as rapidly by methanogenic microbial communities as recently produced organic carbon. Here, we apply methane (CH₄) clumped isotope (Δ₁₈) and ¹⁴C measurements to test whether rates of methanogenesis are related to carbon substrate age. Results from culture experiments indicate that Δ₁₈ values are negatively correlated with CH₄ production rate. Measurements of ebullition samples from thermokarst lakes in Alaska and glacial lakes in Sweden indicate strong negative correlations between CH₄ Δ₁₈ and the fraction modern carbon. These correlations imply that CH₄ derived from older carbon substrates is produced relatively slowly. Relative rates of methanogenesis, as inferred from Δ₁₈ values, are not positively correlated with CH₄ flux estimates, highlighting the likely importance of environmental variables other than CH₄ production rates in controlling ebullition fluxes.

Details

ISSN :
19448007 and 00948276
Volume :
47
Database :
OpenAIRE
Journal :
Geophysical Research Letters
Accession number :
edsair.doi...........b0fb8be38018e8a86c6542d6dcb043cc
Full Text :
https://doi.org/10.1029/2019gl086756