Back to Search
Start Over
The optical and electrical properties of silver nanowire mesh films
- Source :
- Journal of Applied Physics. 114:024302
- Publication Year :
- 2013
- Publisher :
- AIP Publishing, 2013.
-
Abstract
- We present experimental results for the transmission T, haze H, sheet resistance Rs, and its spatial fluctuations ΔRs for silver nanowire films. Mie light scattering theory of nanowires is developed to predict both T and H as a function of diameter D of wires and the surface fraction ϕs covered by the wires. Percolation theory is used to derive an equation for Rs in terms of D, the aspect ratio of wires D/L and ϕs. The critical exponent t for percolation of Rs is found to be 1.23 in close agreement with theoretical results for 2D random resistive networks (t = 1.3). These equations show the importance of both the distributions of diameter ⟨D⟩ and aspect ratio of wires ⟨D⟩⟨L⟩/⟨L2⟩ to predict the optical and electrical properties. Spatial fluctuations ΔRs/Rs can also be significant in these films and be greater than 10% as ϕs approaches the critical percolation concentration ϕc. We show that the calculated T versus Rs and H versus Rs curves are in good agreement with the experimental data. We propose figures of merit for percolating nanowire films in terms of high T, low H, and low Rs to order the quality of films for touch screen applications. The results show that D 5 μm are needed to achieve low haze H 90%, together with low Rs ∼ 100 Ω/sq for touch screen applications. Finally, we present experimental and theoretical results of the real and imaginary refractive indices of AgNW/polymer nanocomposites, and find that the Van De Hulst model is more accurate than the Maxwell Garnett models.
Details
- ISSN :
- 10897550 and 00218979
- Volume :
- 114
- Database :
- OpenAIRE
- Journal :
- Journal of Applied Physics
- Accession number :
- edsair.doi...........b0944bfb443f6954fd9ca03f279600a0
- Full Text :
- https://doi.org/10.1063/1.4812390