Back to Search Start Over

Size at Birth and Cord Blood Levels of Insulin, Insulin-Like Growth Factor I (IGF-I), IGF-II, IGF-Binding Protein-1 (IGFBP-1), IGFBP-3, and the Soluble IGF-II/Mannose-6-Phosphate Receptor in Term Human Infants1

Authors :
David B. Dunger
Michael Costello
Ken K. Ong
Jürgen Kratzsch
Carolyn D. Scott
Wieland Kiess
Source :
The Journal of Clinical Endocrinology & Metabolism. 85:4266-4269
Publication Year :
2000
Publisher :
The Endocrine Society, 2000.

Abstract

Experimental rodent studies demonstrate that insulin-like growth factor II (IGF-II) promotes fetal growth, whereas the nonsignaling IGF-II receptor (IGF2R) is inhibitory; in humans their influence is as yet unclear. A soluble, circulating form of IGF2R inhibits IGF-II mediated DNA synthesis and may therefore restrain fetal growth. We measured cord blood levels of IGF-II, soluble IGF2R, insulin, IGF-I, IGF-binding protein-1 (IGFBP-1), and IGFBP-3 and examined their relationships to weight, length, head circumference, ponderal index, and placental weight at birth in 199 normal term singletons. IGF-II levels correlated with levels of IGF-I (r = 0.29; P < 0.0005), IGFBP-3 (r = 0.45; P < 0.0005), and soluble IGF2R (r = 0.20; P < 0.005). Insulin and IGF-I were positively related to all parameters of size at birth. IGF-II was weakly related to ponderal index (r = 0.18; P < 0.05) and placental weight (r = 0.18; P < 0.05), and the molar ratio of IGF-II to IGF2R was also related to birth weight (r = 0.15; P < 0.05). Correlations between the IGFs and size at birth were stronger in nonprimiparous pregnancies; in these, IGF-I (r = 0.52; P < 0.0005), IGFBP-3 (r = 0.41; P < 0.0005), and the IGF-II to IGF2R ratio (r = 0.40; P < 0.0005) were most closely related to placental weight, together accounting for 39% of its variance. We demonstrate for the first time relationships between circulating IGF-II and soluble IGF2R levels and size at birth, supporting their putative opposing roles in human fetal growth.

Details

ISSN :
19457197 and 0021972X
Volume :
85
Database :
OpenAIRE
Journal :
The Journal of Clinical Endocrinology & Metabolism
Accession number :
edsair.doi...........b07a95bc5526a19d8e4c2fc3a6bc28cf
Full Text :
https://doi.org/10.1210/jcem.85.11.6998