Back to Search Start Over

Handwriting-based gender and handedness classification using convolutional neural networks

Authors :
Mina Rahmanian
Mohammad Amin Shayegan
Source :
Multimedia Tools and Applications. 80:35341-35364
Publication Year :
2021
Publisher :
Springer Science and Business Media LLC, 2021.

Abstract

Demographical handwritings classification has many applications in various disciplines such as biometrics forensics, psychology, archeology, etc. Finding the best features for differentiating subclasses (e.g. men and women) is one of the major problems in handwriting based demographical classification. Convolutional Neural Networks (CNNs) advanced models have a higher capacity in extracting appropriate features compared to traditional models. In this paper, the ability and capacity of deep CNNs in automatic classification of two handwriting based demographical problems, i.e. gender and handedness classification, have been examined by using advanced CNNs; DenseNet201, InceptionV3, and Xception. Two databases, IAM (English texts) and KHATT (Arabic texts) have been employed in this study. The achieved results showed that the proposed CNNs architectures performed well in improving classification results, with 84% accuracy (1.27% improvement) for gender classification using the IAM database, and 99.14% accuracy (28.23% improvement) for handedness classification using the KHATT database.

Details

ISSN :
15737721 and 13807501
Volume :
80
Database :
OpenAIRE
Journal :
Multimedia Tools and Applications
Accession number :
edsair.doi...........b038347dc3ed046ef5dcb8f580ede398