Back to Search
Start Over
An intrinsically safe facility for forefront research and training on nuclear technologies — General description of the system
- Source :
- The European Physical Journal Plus. 129
- Publication Year :
- 2014
- Publisher :
- Springer Science and Business Media LLC, 2014.
-
Abstract
- In the framework of research on generation-IV reactors, it is very important to have infrastructures specifically dedicated to the study of fundamental parameters in dynamics and kinetics of future fast-neutron reactors. Among various options pursued by international groups, Italy focused on lead-cooled reactors, which guarantee minimal neutron slowdown and capture and efficient cooling. In this paper it is described the design of a the low-power prototype generator, LEADS, that could be used within research facilities such as the National Laboratory of Legnaro of the INFN. The LEADS has a high safety standard in order to be used as a training facility, but it has also a good flexibility so as to allow a wide range of measurements and experiments. A high safety standard is achieved by limiting the reactor power to less than few hundred kW and the neutron multiplication factor keff to less than 0.95 (a limiting value for spent fuel pool), by using a pure-uranium fuel (no plutonium) and by using solid lead as a diffuser. The proposed core is therefore intrinsically subcritical and has to be driven by an external neutron source generated by a proton beam impinging in a target. Preliminary simulations, performed with the MCNPX code indicated, for a 0.75mA continuous proton beam current at 70MeV proton energy, a reactor power of about 190kW when using a beryllium converter. The enriched-uranium fuel elements are immersed in a solid-lead matrix and contained within a steel vessel. The system is cooled by helium gas, which is transparent to neutrons and does not undergo activation. The gas is pumped by a compressor through specific holes at the entrance of the active volume with a temperature which varies according to the operating conditions and a pressure of about 1.1MPa. The hot gas coming out of the vessel is cooled by an external helium-water heat exchanger. The beryllium converter is cooled by its dedicated helium gas cooling system. After shutdown, the decay is completely dissipated by conduction through the lead reflector and steel vessel, and then evacuated by irradiation from the vessel surface to the external ambient air.
Details
- ISSN :
- 21905444
- Volume :
- 129
- Database :
- OpenAIRE
- Journal :
- The European Physical Journal Plus
- Accession number :
- edsair.doi...........aed668ad502953ad3e7a26d01ab60bf9
- Full Text :
- https://doi.org/10.1140/epjp/i2014-14065-7