Back to Search
Start Over
A new generalization of Hermite’s reciprocity law
- Source :
- Journal of Algebraic Combinatorics. 43:399-416
- Publication Year :
- 2015
- Publisher :
- Springer Science and Business Media LLC, 2015.
-
Abstract
- Given a partition $$\lambda $$? of n, the Schur functor$${\mathbb {S}}_\lambda $$S? associates to any complex vector space V, a subspace $${\mathbb {S}}_\lambda (V)$$S?(V) of $$V^{\otimes n}$$V?n. Hermite's reciprocity law, in terms of the Schur functor, states that $${\mathbb {S}}_{(p)}\left( {\mathbb {S}}_{(q)}({\mathbb {C}}^2)\right) \simeq {\mathbb {S}}_{(q)}\left( {\mathbb {S}}_{(p)}({\mathbb {C}}^2)\right) . $$S(p)S(q)(C2)?S(q)S(p)(C2). We extend this identity to many other identities of the type $${\mathbb {S}}_{\lambda }\left( {\mathbb {S}}_{\delta }({\mathbb {C}}^2)\right) \simeq {\mathbb {S}}_{\mu }\left( {\mathbb {S}}_{\epsilon }({\mathbb {C}}^2)\right) $$S?S?(C2)?SμS∈(C2).
- Subjects :
- Discrete mathematics
Algebra and Number Theory
Hermite polynomials
010102 general mathematics
0102 computer and information sciences
Reciprocity law
Schur functor
01 natural sciences
Combinatorics
010201 computation theory & mathematics
Complex vector
Discrete Mathematics and Combinatorics
0101 mathematics
Mathematics
Subjects
Details
- ISSN :
- 15729192 and 09259899
- Volume :
- 43
- Database :
- OpenAIRE
- Journal :
- Journal of Algebraic Combinatorics
- Accession number :
- edsair.doi...........ae957d8874390d50698137e3f11ddc16