Back to Search
Start Over
Orthosteric-allosteric dual inhibitors of PfHT1 as selective anti-malarial agents
- Publication Year :
- 2020
- Publisher :
- Cold Spring Harbor Laboratory, 2020.
-
Abstract
- Artemisinin-resistant malaria parasites have emerged and been spreading, posing a significant public health challenge. Anti-malarial drugs with novel mechanisms of action are therefore urgently needed. In this report, we exploit a “selective starvation” strategy by selectively inhibiting Plasmodium falciparum hexose transporter 1 (PfHT1), the sole hexose transporter in Plasmodium falciparum, over human glucose transporter 1 (hGLUT1), providing an alternative approach to fight against multidrug-resistant malaria parasites. Comparison of the crystal structures of human GLUT3 and PfHT1 bound to C3361, a PfHT1-specific moderate inhibitor, revealed an inhibitor binding-induced pocket that presented a promising druggable site. We thereby designed small-molecules to simultaneously block the orthosteric and allosteric pockets of PfHT1. Through extensive structure-activity relationship (SAR) studies, the TH-PF series was identified to selectively inhibit PfHT1 over GLUT1 and potent against multiple strains of the blood-stage P. falciparum. Our findings shed light on the next-generation chemotherapeutics with a paradigm-shifting structure-based design strategy to simultaneously targeting the orthosteric and allosteric sites of a transporter.Significance statementBlocking sugar uptake in P. falciparum by selectively inhibiting the hexose transporter PfHT1 kills the blood-stage parasites without affecting the host cells, indicating PfHT1 as a promising therapeutic target. Here, we report the development of novel small-molecule inhibitors that are selectively potent to the malaria parasites over human cell lines by simultaneously targeting the orthosteric and the allosteric binding sites of PfHT1. Our findings established the basis for the rational design of next-generation anti-malarial drugs.
Details
- Database :
- OpenAIRE
- Accession number :
- edsair.doi...........ad3d7af92293453386beebfd73dc62ff
- Full Text :
- https://doi.org/10.1101/2020.08.25.260232