Back to Search Start Over

High-Frequency Oscillations in the Normal Human Brain

Authors :
Birgit Frauscher
Rina Zelmann
Dang Khoa Nguyen
François Dubeau
Nicolás von Ellenrieder
Philippe Kahane
Jean Gotman
Christine Rogers
Source :
Annals of Neurology. 84:374-385
Publication Year :
2018
Publisher :
Wiley, 2018.

Abstract

Objective High-frequency oscillations (HFOs) are a promising biomarker for the epileptogenic zone. It has not been possible, however, to differentiate physiological from pathological HFOs, and baseline rates of HFO occurrence vary substantially across brain regions. This project establishes region-specific normative values for physiological HFOs and high-frequency activity (HFA). Methods Intracerebral stereo-encephalographic recordings with channels displaying normal physiological activity from nonlesional tissue were selected from 2 tertiary epilepsy centers. Twenty-minute sections from N2/N3 sleep were selected for automatic detection of ripples (80-250Hz), fast ripples (>250Hz), and HFA defined as long-lasting activity > 80Hz. Normative values are provided for 17 brain regions. Results A total of 1,171 bipolar channels with normal physiological activity from 71 patients were analyzed. The highest rates of ripples were recorded in the occipital cortex, medial and basal temporal region, transverse temporal gyrus and planum temporale, pre- and postcentral gyri, and medial parietal lobe. The mean rate of fast ripples was very low (0.038/min). Only 5% of channels had a rate > 0.2/min HFA was observed in the medial occipital lobe, pre- and postcentral gyri, transverse temporal gyri and planum temporale, and lateral occipital lobe. Interpretation This multicenter atlas is the first to provide region-specific normative values for physiological HFO rates and HFA in common stereotactic space; rates above these can now be considered pathological. Physiological ripples are frequent in eloquent cortex. In contrast, physiological fast ripples are very rare, making fast ripples a good candidate for defining the epileptogenic zone. Ann Neurol 2018;84:374-385.

Details

ISSN :
03645134
Volume :
84
Database :
OpenAIRE
Journal :
Annals of Neurology
Accession number :
edsair.doi...........ad323022f1ee83cc4120a1ebb624d7de
Full Text :
https://doi.org/10.1002/ana.25304