Back to Search
Start Over
Advanced boil-off gas studies for liquefied natural gas
- Source :
- Applied Thermal Engineering. 189:116735
- Publication Year :
- 2021
- Publisher :
- Elsevier BV, 2021.
-
Abstract
- Current methods of estimating boil-off gas (BOG) rates for large-scale liquefied natural gas (LNG) storage tanks are largely empirical and based on limited available experimental data. More accurate models would be extremely valuable for estimating the potential for excessive BOG generation during LNG storage and transportation scenarios as well as providing critical inputs into the design of BOG re-liquefaction systems. This study reports a series of experiments that have been conducted for LNG-like binary mixtures of methane and ethane to measure the BOG production and resultant pressure change under various industrially relevant conditions. Experimental data and observations made in this work are compared with both the available literature and with the predictions of a new non-equilibrium model that uses the GERG-2008 equation of state to calculate relevant LNG and BOG properties. The data reveal three distinct stages of BOG evolution, here labelled as self-pressurisation, transient, and homogenous. It is observed that, in the self-pressurisation stage, the thickness of a thermally stratified layer adjacent to the liquid–vapor interface increases with time. The transient stage is defined to commence when the system reaches the specified relief pressure and the homogeneous stage is reached upon the effective elimination of thermal stratification in the LNG. Good agreement exists between this new model and the experimental and literature data acquired during the self-pressurisation and homogeneous stages. In the transient stage, the model does not accurately quantify the BOG rate indicating a need to incorporate the effects liquid thermal stratification in future model development.
- Subjects :
- Equation of state
geography
geography.geographical_feature_category
Petroleum engineering
020209 energy
Energy Engineering and Power Technology
Stratification (water)
02 engineering and technology
Industrial and Manufacturing Engineering
Methane
chemistry.chemical_compound
020401 chemical engineering
chemistry
Storage tank
0202 electrical engineering, electronic engineering, information engineering
Environmental science
Transient (oscillation)
Stage (hydrology)
0204 chemical engineering
Bog
Liquefied natural gas
Subjects
Details
- ISSN :
- 13594311
- Volume :
- 189
- Database :
- OpenAIRE
- Journal :
- Applied Thermal Engineering
- Accession number :
- edsair.doi...........acb95c17fca8aecaabd233cca76084eb
- Full Text :
- https://doi.org/10.1016/j.applthermaleng.2021.116735