Back to Search Start Over

Nuclear Diagnostics of ICF

Authors :
G. J. Schmid
John A. Oertel
Christian Stoeckl
Paul A. Jaanimagi
Michael J. Moran
L. Disdier
J. A. Frenje
R. R. Berggren
N. Izumi
M. A. Stoyer
A. Rouyer
D. D. Meyerhofer
T. C. Sangster
C. S. Young
J. M. Soures
Joseph M. Mack
S. E. Caldwell
T. W. Phillips
C. K. Li
R. A. Lerche
J. L. Bourgade
V. Yu. Glebov
R. K. Fisher
J. R. Faulkner
R. D. Petrasso
Source :
Advanced Diagnostics for Magnetic and Inertial Fusion ISBN: 9781461346692
Publication Year :
2002
Publisher :
Springer US, 2002.

Abstract

In inertial confinement fusion (ICF), a high temperature and high density plasma is produced by the spherical implosion of a small capsule1. A spherical target capsule is irradiated uniformly by a laser beam (direct irradiation) or x-rays from a high Z enclosure (hohlraum) that is irradiated by laser or ion beams (indirect irradiation). Then high- pressure ablation of the surface causes the fuel to be accelerated inward. Thermonuclear fusion reactions begin in the center region of the capsule as it is heated to sufficient temperature (10 keV) by the converging shocks (hot spot formation). During the stagnation of the imploded shell, the fuel in the shell region is compressed to high density (∼103 times solid density in fuel region). When these conditions are established, energy released by the initial nuclear reactions in center “hot-spot” region can heat up the cold “fuel” region and cause ignition.

Details

ISBN :
978-1-4613-4669-2
ISBNs :
9781461346692
Database :
OpenAIRE
Journal :
Advanced Diagnostics for Magnetic and Inertial Fusion ISBN: 9781461346692
Accession number :
edsair.doi...........acb759977e6d7f66d0a305cc8e52816b
Full Text :
https://doi.org/10.1007/978-1-4419-8696-2_15