Back to Search Start Over

Initial value problem for a class of nonlinear pseudo-hyperbolic equations

Authors :
Yang Zhijian
Chen Guowang
Source :
Acta Mathematicae Applicatae Sinica. 9:166-173
Publication Year :
1993
Publisher :
Springer Science and Business Media LLC, 1993.

Abstract

The existence of global weak solutions to the periodic boundary problem or the initial value problem for the nonlinear Pseudo-hyperbolic equation $$u_{tt} - \left[ {a_1 + a_2 \left( {u_x } \right)^{2m} } \right]u_{xx} - a_3 u_{xxt} = f\left( {x,t,u,u_x } \right)$$ is proved by the method of the vanishing of the additional diffusion terms, Leray-Schauder's fixed-point argument and Sobolev's estimates, wherem≥1 is a natural number andai>0 (i=1, 2, 3) are constants.

Details

ISSN :
16183932 and 01689673
Volume :
9
Database :
OpenAIRE
Journal :
Acta Mathematicae Applicatae Sinica
Accession number :
edsair.doi...........abdd5a304a9fb1d1f66dc973d2405b8c