Back to Search Start Over

A 33-yr Mei-Yu-Season Climatology of Shear Lines over the Yangtze–Huai River Basin in Eastern China

Authors :
Xiuping Yao
Lizhu Yan
Jiali Ma
Da-Lin Zhang
Source :
Journal of Applied Meteorology and Climatology. 59:1125-1137
Publication Year :
2020
Publisher :
American Meteorological Society, 2020.

Abstract

A 33-yr climatology of shear lines occurring over the Yangtze–Huai River basin (YHSLs) of eastern China during the mei-yu season (i.e., June and July) of 1981–2013 is examined using the daily ERA-Interim reanalysis data and daily rain gauge observations. Results show that (i) nearly 75% of the heavy-rainfall days (i.e., >50 mm day−1) are accompanied by YHSLs, (ii) about 66% of YHSLs can produce heavy rainfall over the Yangtze–Huai River basin, and (iii) YHSL-related heavy rainfall occurs frequently in the south-central basin. The statistical properties of YHSLs are investigated by classifying them into warm, cold, quasi-stationary, and vortex types based on their distinct flow and thermal patterns as well as orientations and movements. Although the warm-type rainfall intensity is the weakest among the four, it has the highest number of heavy-rainfall days, making it the largest contributor (33%) to the total mei-yu rainfall amounts associated with YHSLs. By comparison, the quasi-stationary type has the smallest number of heavy-rainfall days, contributing about 19% to the total rainfall, whereas the vortex type is the more frequent extreme-rain producer (i.e., >100 mm day−1). The four types of YHSLs are closely related to various synoptic-scale low-to-midtropospheric disturbances—such as the southwest vortex, low-level jets, and midlatitude traveling perturbations that interact with mei-yu fronts over the basin and a subtropical high to the south—that provide favorable lifting and the needed moisture supply for heavy-rainfall production. The results have important implications for the operational rainfall forecasts associated with YHSLs through analog pattern recognition.

Details

ISSN :
15588432 and 15588424
Volume :
59
Database :
OpenAIRE
Journal :
Journal of Applied Meteorology and Climatology
Accession number :
edsair.doi...........ab762064531f1a045bf3891c243fab89
Full Text :
https://doi.org/10.1175/jamc-d-19-0229.1