Back to Search
Start Over
The geometric invariants for the spectrum of the Stokes operator
- Source :
- Mathematische Annalen. 382:1985-2032
- Publication Year :
- 2021
- Publisher :
- Springer Science and Business Media LLC, 2021.
-
Abstract
- For a bounded domain$$\Omega \subset {\mathbb {R}}^n$$Ω⊂Rnwith smooth boundary, we explicitly calculate the first two coefficients of the asymptotic expansion for the integral of the trace of the Stokes semigroup$$e^{-t S}$$e-tSas$$t\rightarrow 0^+$$t→0+. These coefficients (i.e., spectral invariants) provide precise information for the volume of the domain$$\Omega $$Ωand the surface area of the boundary$$\partial \Omega $$∂Ωby the spectrum of the Stokes problem. As an application, we show that ann-dimensional ball is uniquely determined by its Stokes spectrum among all Euclidean bounded domains with smooth boundary.
- Subjects :
- Pure mathematics
Semigroup
General Mathematics
010102 general mathematics
Spectrum (functional analysis)
Boundary (topology)
01 natural sciences
Domain (mathematical analysis)
010101 applied mathematics
Bounded function
Ball (mathematics)
0101 mathematics
Asymptotic expansion
Stokes operator
Mathematics
Subjects
Details
- ISSN :
- 14321807 and 00255831
- Volume :
- 382
- Database :
- OpenAIRE
- Journal :
- Mathematische Annalen
- Accession number :
- edsair.doi...........ab619f7440f5f376ed2addf1e953fb56
- Full Text :
- https://doi.org/10.1007/s00208-021-02167-w