Back to Search Start Over

The geometric invariants for the spectrum of the Stokes operator

Authors :
Genqian Liu
Source :
Mathematische Annalen. 382:1985-2032
Publication Year :
2021
Publisher :
Springer Science and Business Media LLC, 2021.

Abstract

For a bounded domain$$\Omega \subset {\mathbb {R}}^n$$Ω⊂Rnwith smooth boundary, we explicitly calculate the first two coefficients of the asymptotic expansion for the integral of the trace of the Stokes semigroup$$e^{-t S}$$e-tSas$$t\rightarrow 0^+$$t→0+. These coefficients (i.e., spectral invariants) provide precise information for the volume of the domain$$\Omega $$Ωand the surface area of the boundary$$\partial \Omega $$∂Ωby the spectrum of the Stokes problem. As an application, we show that ann-dimensional ball is uniquely determined by its Stokes spectrum among all Euclidean bounded domains with smooth boundary.

Details

ISSN :
14321807 and 00255831
Volume :
382
Database :
OpenAIRE
Journal :
Mathematische Annalen
Accession number :
edsair.doi...........ab619f7440f5f376ed2addf1e953fb56
Full Text :
https://doi.org/10.1007/s00208-021-02167-w