Back to Search
Start Over
Inequalities for the Gaussian hypergeometric function
- Source :
- Science China Mathematics. 57:2369-2380
- Publication Year :
- 2014
- Publisher :
- Springer Science and Business Media LLC, 2014.
-
Abstract
- we study the monotonicity of certain combinations of the Gaussian hypergeometric functions F(−1/2, 1/2; 1; 1 − x c ) and F(−1/2 − δ, 1/2 + δ; 1;1 − x d ) on (0, 1) for given 0 < c ⩽ 5d/6 < ∞ and δ ∈ (−1/2, 1/2), and find the largest value δ 1 = δ 1(c, d) such that inequality F(−1/2, 1/2; 1; 1 − x c ) < F(−1/2 − δ, 1/2 + δ; 1; 1 − x d ) holds for all x ∈ (0, 1). Besides, we also consider the Gaussian hypergeometric functions F(a−1 −δ, 1-a+δ; 1;1 −x 3) and F(a−1, 1 −a; 1; 1−x 2) for given a ∈ [1/29, 1) and δ ∈ (a−1, a), and obtain the analogous results.
Details
- ISSN :
- 18691862 and 16747283
- Volume :
- 57
- Database :
- OpenAIRE
- Journal :
- Science China Mathematics
- Accession number :
- edsair.doi...........ab607fcb8da485a3840d4c82665104bc
- Full Text :
- https://doi.org/10.1007/s11425-014-4858-3