Back to Search
Start Over
Formation, Stability and Magnetism of New Gd3TAl3Ge2 Quaternary Compounds (T = Mn, Cu)
- Source :
- Solid State Phenomena. 289:93-101
- Publication Year :
- 2019
- Publisher :
- Trans Tech Publications, Ltd., 2019.
-
Abstract
- A study on the formation and stability of new quaternary compounds with the general chemical formula Gd3TAl3Ge2(T = Mn, Cu) has been undertaken by experimental investigations (SEM-EDX, DTA and XRD) and density functional theory (DFT) calculations. These compounds crystallize in the hexagonal Y3NiAl3Ge2-type structure (hP9, P–62m, Z = 1) (an ordered, quaternary derivative of the ternary ZrNiAl or of the binary Fe2P prototypes), with lattice parameters values a = 7.0239(2) Å and c = 4.2580(1) Å for Gd3MnAl3Ge2and a = 7.0434(1) Å and c = 4.2089(1) Å for Gd3CuAl3Ge2. DTA suggests a peritectic reaction for the formation of these compounds (at 1245°C for Gd3CuAl3Ge2). The existence and stability of these phases has been explained on the basis of DFT calculations, and a comparison of ground state properties of the studied compounds with the earlier known Gd3CoAl3Ge2phase is outlined. The negative formation energies in all three cases govern the stability of compounds from theory as well, predicting Gd3MnAl3Ge2as the most stable phase with highest formation energy (–13.01 eV/f.u.). The total DOS are generic in nature and suggest the robust magnetism, with the Gd-f moments of ≈7 μB. An antiparallel coupling among Gd-f and T-d states is observed for all compounds, as usually seen in rare earth (R) - transition metal (T) compounds. Preliminary magnetization measurements on Gd3MnAl3Ge2show two ferromagnetic/ferrimagnetic (FM/FIM) like transitions at TC1= 142 K and TC2= 97 K, with another anomaly seen at ≈15 K. Isothermal magnetization data show no hysteresis even at 5 K, and the magnetization does not saturate up to 50 kOe, further suggesting a possible FIM behavior.
- Subjects :
- Materials science
Magnetism
02 engineering and technology
Crystal structure
010402 general chemistry
021001 nanoscience & nanotechnology
Condensed Matter Physics
01 natural sciences
Atomic and Molecular Physics, and Optics
0104 chemical sciences
Crystallography
General Materials Science
0210 nano-technology
Quaternary
Subjects
Details
- ISSN :
- 16629779
- Volume :
- 289
- Database :
- OpenAIRE
- Journal :
- Solid State Phenomena
- Accession number :
- edsair.doi...........aaed0acd7511b2ccfebc31e6f3c4e8b3