Back to Search Start Over

Diurnal Variations of Presummer Rainfall over Southern China

Authors :
Zhina Jiang
Tingting Qian
Da-Lin Zhang
Rudi Xia
Source :
Journal of Climate. 30:755-773
Publication Year :
2017
Publisher :
American Meteorological Society, 2017.

Abstract

In this study, the presummer diurnal cycle of rainfall (DCR) over southern China is examined using the merged 0.1°-resolution gridded hourly rain gauge and satellite rainfall dataset and the National Centers for Environmental Prediction Final Global Analysis during April to June of 2008–2015. Results show pronounced diurnal variations in rainfall amount, frequency, and intensity over southern China, with substantially different amplitudes from southwestern to southeastern China, and from the pre- to postmonsoon-onset period. Southwestern China often encounters significant nocturnal-to-morning rainfall under the influence of enhanced nocturnal low-level southwesterly winds. Southeastern China is dominated by afternoon rainfall, as a result of surface heating, likely aided by local topographical lifting. Both the pre- and postmonsoon-onset periods exhibit two diurnal rainfall peaks: one in the early morning and the other in the late afternoon. But the latter shows the two peaks with nearly equal amplitude whereas the former displays a much larger early morning peak than that in the late afternoon. Three propagating modes accounting for the presummer DCR are found: (i) an eastward- or southeastward-propagating mode occurs mostly over southwestern China that is associated with enhanced transport of warm and moist air from tropical origin and the induced low-level convergence, (ii) a quasi-stationary mode over southeastern China appears locally in the warm sector with weak-gradient flows, and (iii) an inland-propagating mode occurs during the daytime in association with sea breezes along the southern coastal regions, especially evident throughout the postmonsoon-onset period.

Details

ISSN :
15200442 and 08948755
Volume :
30
Database :
OpenAIRE
Journal :
Journal of Climate
Accession number :
edsair.doi...........aa283cad268d05ad032eca23c6328eda