Back to Search Start Over

Single-Strand DNA Breaks Cause Replisome Disassembly

Authors :
Johannes C. Walter
Thomas G.W. Graham
Kyle B. Vrtis
Gheorghe Chistol
James M. Dewar
R. Alex Wu
Publication Year :
2020
Publisher :
Cold Spring Harbor Laboratory, 2020.

Abstract

SummaryDNA damage impedes replication fork progression and threatens genome stability. Upon encounter with most DNA adducts, the replicative CMG helicase (CDC45-MCM2-7-GINS) stalls or uncouples from the point of synthesis, yet CMG eventually resumes replication. However, little is known about the effect on replication of single-strand breaks or “nicks”, which are abundant in mammalian cells. Using Xenopus egg extracts, we reveal that CMG collision with a nick in the leading strand template generates a blunt-ended double-strand break (DSB). Moreover, CMG, which encircles the leading strand template, “runs off” the end of the DSB. In contrast, CMG collision with a lagging strand nick generates a broken end with a single-stranded overhang. In this setting, CMG translocates beyond the nick on double-stranded DNA and is then actively removed from chromatin by the p97 ATPase. Our results show that nicks are uniquely dangerous DNA lesions that invariably cause replisome disassembly, and they argue that CMG cannot be deposited on dsDNA while cells resolve replication stress.HighlightsThe structures of leading and lagging strand collapsed forks are differentCMG passively “runs off” the broken DNA end during leading strand fork collapseCMG is unloaded from duplex DNA after lag collapse in a p97-dependent mannerNicks are uniquely toxic lesions that cause fork collapse and replisome disassembly

Details

Database :
OpenAIRE
Accession number :
edsair.doi...........a9bd261bc101dde8b7ee171a85eef4ff
Full Text :
https://doi.org/10.1101/2020.08.17.254235