Back to Search Start Over

Approximate solution of nonlinear inverse problems by fixed-point iteration

Authors :
Sergiy Pereverzyev
Norbert Siedow
René Pinnau
Source :
Journal of Physics: Conference Series. 135:012081
Publication Year :
2008
Publisher :
IOP Publishing, 2008.

Abstract

In this paper we propose a derivative-free iterative method for the approximate solution of a nonlinear inverse problem Fx = y. In this method the iterations are defined as Gxk+1 = Gxk + (Sy − SFxk), where G is an easily invertible operator and S is an operator from a data space to a solution space. We give general suggestions for the choice of operators G and S and show a practically relevant example of an inverse problem where such a method is succesfully applied. We carry out analysis of the proposed method for linear inverse problems. Using the recently introduced balancing principle we construct a stopping rule. Under reasonable assumptions, we show that this stopping rule leads to the regularization algorithm. Numerical results for a test example show its satisfactory behavior.

Details

ISSN :
17426596
Volume :
135
Database :
OpenAIRE
Journal :
Journal of Physics: Conference Series
Accession number :
edsair.doi...........a8cce05c2acedb97fcf2356033740a42
Full Text :
https://doi.org/10.1088/1742-6596/135/1/012081