Back to Search Start Over

Improved pervaporation efficiency of thin-film composite polyamide membranes fabricated through acetone-assisted interfacial polymerization

Authors :
Kueir-Rarn Lee
Shu-Hsien Huang
Hong-Li Yang
Yu-Lin Yeh
Manuel Reyes De Guzman
Micah Belle Marie Yap Ang
Source :
Chemical Engineering Research and Design. 165:375-385
Publication Year :
2021
Publisher :
Elsevier BV, 2021.

Abstract

• Promoting the separation efficiency of pervaporation membranes is a must to meet the growing demands of society. In this study, acetone-assisted interfacial polymerization was employed to produce thin-film composite (TFC) pervaporation membranes with improved performance. Two monomers were considered—diethylenetriamine (DETA) and trimesoyl chloride (TMC); they reacted with each other to form a thin polyamide layer, which was deposited on a hydrolyzed polyacrylonitrile (HPAN) substrate. Aqueous solutions containing different concentrations of acetone were used to dissolve DETA. Introducing acetone as a cosolvent of water enhanced the sorption of DETA in the HPAN support. It also altered and improved the physicochemical properties of the TFC membranes. An optimum concentration of 50 wt% aqueous acetone solution was established. Through acetone-assisted interfacial polymerization, a TFC membrane was then fabricated, and it exhibited a high separation efficiency: permeation flux = 1641 ± 134 g∙m−2 h−1 and water concentration in the permeate = 98%–99% (feed =70 wt% aqueous isopropanol solution). Moreover, the modified TFC membrane displayed a high separation performance at a wide range of operating conditions.

Details

ISSN :
02638762
Volume :
165
Database :
OpenAIRE
Journal :
Chemical Engineering Research and Design
Accession number :
edsair.doi...........a8b2fcfe9c54998c9ce8ee76d15e47be