Back to Search
Start Over
Elliptic Kac–Sylvester Matrix from Difference Lamé Equation
- Source :
- Annales Henri Poincaré. 23:49-65
- Publication Year :
- 2021
- Publisher :
- Springer Science and Business Media LLC, 2021.
-
Abstract
- Through a finite-dimensional reduction of the difference Lame equation, an elliptic analog of the Kac–Sylvester tridiagonal matrix is found. We solve the corresponding finite discrete Lame equation by constructing an orthogonal basis of eigenvectors for this novel elliptic Kac–Sylvester matrix.
- Subjects :
- Sylvester matrix
Nuclear and High Energy Physics
Tridiagonal matrix
010102 general mathematics
Mathematical analysis
Statistical and Nonlinear Physics
01 natural sciences
Orthogonal basis
Reduction (complexity)
Matrix (mathematics)
Nonlinear Sciences::Exactly Solvable and Integrable Systems
0103 physical sciences
Computer Science::Symbolic Computation
010307 mathematical physics
0101 mathematics
Mathematical Physics
Eigenvalues and eigenvectors
Mathematics
Subjects
Details
- ISSN :
- 14240661 and 14240637
- Volume :
- 23
- Database :
- OpenAIRE
- Journal :
- Annales Henri Poincaré
- Accession number :
- edsair.doi...........a8906d96e45b27c454578cb28a22089f
- Full Text :
- https://doi.org/10.1007/s00023-021-01063-y