Back to Search
Start Over
Equivariant Maps from Stiefel Bundles to Vector Bundles
- Source :
- Proceedings of the Edinburgh Mathematical Society. 60:231-250
- Publication Year :
- 2016
- Publisher :
- Cambridge University Press (CUP), 2016.
-
Abstract
- Let E → B be a fibre bundle and let Eʹ → B be a vector bundle. Let G be a compact Lie group acting fibre preservingly and freely on both E and Eʹ – 0, where 0 is the zero section of Eʹ → B. Let f : E → Eʹ be a fibre-preserving G-equivariant map and let Zf = {x ∈ E | f(x) = 0} be the zero set of f. In this paper we give a lower bound for the cohomological dimension of the zero set Zf when a fibre of E → B is a real Stiefel manifold with a free ℤ/2-action or a complex Stiefel manifold with a free 𝕊1-action. This generalizes a well-known result of Dold for sphere bundles equipped with free involutions.
- Subjects :
- Physics
Pure mathematics
Zero set
General Mathematics
010102 general mathematics
Zero (complex analysis)
Vector bundle
Cohomological dimension
01 natural sciences
Stiefel manifold
Section (fiber bundle)
0103 physical sciences
Equivariant map
Fiber bundle
010307 mathematical physics
0101 mathematics
Subjects
Details
- ISSN :
- 14643839 and 00130915
- Volume :
- 60
- Database :
- OpenAIRE
- Journal :
- Proceedings of the Edinburgh Mathematical Society
- Accession number :
- edsair.doi...........a6bb256cb0b4906bc309e97490595644
- Full Text :
- https://doi.org/10.1017/s0013091515000541