Back to Search Start Over

TW lasers in air: ultra-high powers and optimal control strategies

Authors :
Albrecht Lindinger
Jérôme Extermann
C. Lepage
Michel Moret
E. Mazataud
Jérôme Kasparian
Luigi Bonacina
N. Blanchot
P. Canal
Ph. Rohwetter
S. Champeaux
A. Boscheron
M. Castaldi
Shaohui Li
Kamil Stelmaszczyk
Noëlle Lascoux
O. Hartmann
Luc Bergé
Jean-Pierre Wolf
R. Ackermann
D. Raffestin
Rami Salame
O. Bonville
G. Mennerat
E. Salmon
L. Patissou
C. Guet
L. Marmande
Pierre Béjot
Ludger Wöste
Source :
SPIE Proceedings.
Publication Year :
2007
Publisher :
SPIE, 2007.

Abstract

Filamentation, which arises in the propagation of ultrashort laser pulses when the defocusing on the generated plasma dynamically balances the Kerr self-focusing, is now well described on both the laboratory scale (millijoules to tens of millijoules, meters to tens of meters) and the atmospheric scale (hundreds of millijoules, hundreds of meters to kilometers). The scalability of this propagation regime to higher energies and powers is not a priori assured, as high-order nonlinear effects may prevent long distance propagation leading, for instance, to full beam collapse. We thus investigated the atmospheric propagation of the 26 J, 32 TW laser pulses delivered by the Alise beamline, which exceed respectively by one and two orders of magnitude the characteristic power and energy of ultrashort pulses studied so far. We show that filamentation still occurs at these extreme levels. More than 400 filaments simultaneously generate a supercontinuum propagating up to the stratosphere, beyond 20 km. This constitutes the highest power "white-light laser" to date. We also discuss the results of another experiment realized with the Teramobile laser facility: we demonstrated optimal control on the propagation of ultrashort 5 TW laser pulses in air over distances up to 36 m in a closed-loop scheme. We optimized three spectral ranges within the white-light continuum, as well as the ionization efficiency. Optimization results in signal enhancements by typical factors of 2 and 1.4 for the target parameters. In the case of white-light continuum generation, the feedback-driven procedure leads to shorter pulses by reducing their chirp, while, as far as air ionization is concerned, the optimization consists in correcting the pulse from its defects and setting the filamentation onset near the detector.

Details

ISSN :
0277786X
Database :
OpenAIRE
Journal :
SPIE Proceedings
Accession number :
edsair.doi...........a6615e182c926e21e409993bfc825153
Full Text :
https://doi.org/10.1117/12.753168