Back to Search Start Over

Advancement of ammonia based post-combustion CO2 capture using the advanced flash stripper process

Authors :
Leigh Wardhaugh
Hai Yu
Paul Feron
Kangkang Li
Zuliang Chen
Kaiqi Jiang
Source :
Applied Energy. 202:496-506
Publication Year :
2017
Publisher :
Elsevier BV, 2017.

Abstract

The energy consumption associated with absorbent regeneration remains the most critical challenge for the industrial implementation of chemisorption based CO 2 capture processes. Aimed at reducing the energy consumption, this paper proposes a promising process modification of the ammonia (NH 3 ) based CO 2 capture process that involves an advanced flash stripper with a cold rich split. We investigated the techno-economic performance of the advanced NH 3 process integrated with a 650 MW coal-fired power plant, and evaluated it technical and energy performance using a rigorous, rate-based model in Aspen Plus. A sensitivity study was also performed to optimise the modelling parameters, i.e. the stripper pressure and the absorbent NH 3 concentration, and minimize the regeneration duty. A very competitive regeneration duty of 1.86 MJ/kg CO 2 was achieved for an optimised stripper pressure of 12 bar and an NH 3 concentration of 10.2 wt%, with a total equivalent work of 0.164 MW h/t CO 2 for absorbent pumping, NH 3 regeneration and CO 2 compression. We also used a validated economic model to estimate the capital investment of the advanced NH 3 process and its corresponding economic performance. With its significant reduction in energy consumption, the proposed process was economically competitive with CO 2 avoided cost was as low as US$40.7/t CO 2 . This was 34% and 44% less than the reference NH 3 and monoethanolamine (MEA) processes, respectively. The advanced NH 3 based flash stripper also had technical and economic advantages over other amine absorbents, such as MEA and piperazine (PZ), as well as other advanced stripper modifications, such as inter-heating process, revealing its process viability in commercial application.

Details

ISSN :
03062619
Volume :
202
Database :
OpenAIRE
Journal :
Applied Energy
Accession number :
edsair.doi...........a5ca4a15d8c564aae8f78d99c9b5db22