Back to Search Start Over

[Untitled]

Authors :
R. Tupling
Howard J. Green
S. Tupling
Source :
Molecular and Cellular Biochemistry. 224:91-102
Publication Year :
2001
Publisher :
Springer Science and Business Media LLC, 2001.

Abstract

To investigate the hypothesis that prolonged partial ischemia would result in a depression in homogenate sarcoplasmic reticulum (SR) Ca2+-sequestering and mechanical properties in muscle, a cuff was placed around the hindlimb of 8 adult Sprague–Dawley rats (267 ± 5.8 g; × ± S.E.) and partially inflated (315 mm Hg) for 2 h. Following occlusion, the EDL was sampled both from the ischemic (I) and contralateral control (C) leg and SR properties compared with the EDL muscles extracted from rats (n = 8) immediately following anaesthetization (CC). Ischemia was indicated by a lower (p < 0.05) concentration (mmol.kg dry wt–1) of ATP (19.0 ± 0.7 vs. 16.7 ± 0.7) and phosphocreatine (58.1 ± 5.7 vs. 35.0 ± 4.6) in I compared to C. Although Ca2+-ATPase activity (μmol·g protein–1.sec–1 ), both maximal and submaximal, was not different between C and I (19.7 ± 0.4 vs. 18.5 ± 1.3), reductions (p < 0.05) in Ca2+-uptake (mmol·g protein–1.sec–1 ) of between 18.2 and 24.7% across a range of submaximal free Ca2+-levels were observed in I compared to C. Lower submaximal Ca2+-ATPase activity and Ca2+-uptake were also observed in the EDL in C compared to CC animals. Time dependent reductions (p < 0.05) were found in peak twitch and maximal tetanic tension in EDL from I but not C. It is concluded that partial ischemia, resulting in modest reductions in energy state in EDL, induces a reduction in Ca2+-uptake independent of changes in Ca2+-ATPase activity. These changes reduce the coupling ratio and the efficiency of Ca2+-transport by SR.

Details

ISSN :
03008177
Volume :
224
Database :
OpenAIRE
Journal :
Molecular and Cellular Biochemistry
Accession number :
edsair.doi...........a5a64559240f8447fba9545dc09b8f81
Full Text :
https://doi.org/10.1023/a:1011930502758