Back to Search
Start Over
Reliability verificationābased convolutional neural networks for object tracking
- Source :
- IET Image Processing. 13:175-185
- Publication Year :
- 2019
- Publisher :
- Institution of Engineering and Technology (IET), 2019.
-
Abstract
- The authors propose a tracking algorithm based on the reliability analysis of the convolutional neural network to avoid drift. In general, most tracking algorithms implemented with the deep network consist of a single network; they obtain the tracking results according to the confidence and perform updates with the samples, which are collected based on the previous target state. However, this kind of algorithm relies heavily on the accuracy of tracking results, and slight deviations can lead to improperly labelled training samples and degrade the network. Therefore, they design a verification network to guarantee the reliability of the tracking network by correcting the results and it can be connected to a tracking network by sharing convolutional layers. The reliability verification network estimates the accuracy of the results of the tracking network and discards ambiguous results to avoid accumulating errors. Specifically, the verification network can distinguish the target from the confused candidates more precisely because of the optimised training data. The training samples of the verification network consist of characteristics and labels, and they are optimised by feature selection and label enhancement, respectively. The experimental results illustrate the outstanding performance compared with several state-of-the-art methods on the challenging video sequences.
- Subjects :
- Training set
Computer science
business.industry
Reliability (computer networking)
020206 networking & telecommunications
Feature selection
Video sequence
Pattern recognition
02 engineering and technology
Tracking (particle physics)
Convolutional neural network
Video tracking
Signal Processing
0202 electrical engineering, electronic engineering, information engineering
020201 artificial intelligence & image processing
Computer Vision and Pattern Recognition
Artificial intelligence
State (computer science)
Electrical and Electronic Engineering
business
Software
Subjects
Details
- ISSN :
- 17519667
- Volume :
- 13
- Database :
- OpenAIRE
- Journal :
- IET Image Processing
- Accession number :
- edsair.doi...........a4f4b42eddeeefe3763bec724f9c6cd6
- Full Text :
- https://doi.org/10.1049/iet-ipr.2018.5785