Back to Search Start Over

Reliability verificationā€based convolutional neural networks for object tracking

Authors :
Jingting Li
Fan Wang
Xiaopeng Hu
Yan Yang
Source :
IET Image Processing. 13:175-185
Publication Year :
2019
Publisher :
Institution of Engineering and Technology (IET), 2019.

Abstract

The authors propose a tracking algorithm based on the reliability analysis of the convolutional neural network to avoid drift. In general, most tracking algorithms implemented with the deep network consist of a single network; they obtain the tracking results according to the confidence and perform updates with the samples, which are collected based on the previous target state. However, this kind of algorithm relies heavily on the accuracy of tracking results, and slight deviations can lead to improperly labelled training samples and degrade the network. Therefore, they design a verification network to guarantee the reliability of the tracking network by correcting the results and it can be connected to a tracking network by sharing convolutional layers. The reliability verification network estimates the accuracy of the results of the tracking network and discards ambiguous results to avoid accumulating errors. Specifically, the verification network can distinguish the target from the confused candidates more precisely because of the optimised training data. The training samples of the verification network consist of characteristics and labels, and they are optimised by feature selection and label enhancement, respectively. The experimental results illustrate the outstanding performance compared with several state-of-the-art methods on the challenging video sequences.

Details

ISSN :
17519667
Volume :
13
Database :
OpenAIRE
Journal :
IET Image Processing
Accession number :
edsair.doi...........a4f4b42eddeeefe3763bec724f9c6cd6
Full Text :
https://doi.org/10.1049/iet-ipr.2018.5785