Back to Search Start Over

Generating flow fields variations by modulating amplitude and resizing simulation space

Authors :
Hiroyuki Ochiai
Kei Iwasaki
Syuhei Sato
Yoshinori Dobashi
Tsuyoshi Yamamoto
Source :
SIGGRAPH ASIA Technical Briefs
Publication Year :
2013
Publisher :
ACM, 2013.

Abstract

The visual simulation of fluids has become an important element in many applications, such as movies and computer games. In these applications, large-scale fluid scenes, such as fire in a village, are often simulated by repeatedly rendering multiple small-scale fluid flows. In these cases, animators are requested to generate many variations of a small-scale fluid flow. This paper presents a method to help animators meet such requirements. Our method enables the user to generate flow field variations from a single simulated dataset obtained by fluid simulation. The variations are generated in both the frequency and spatial domains. Fluid velocity fields are represented using Laplacian eigenfunctions which ensure that the flow field is always incompressible. In generating the variations in the frequency domain, we modulate the coefficients (amplitudes) of the basis functions. To generate variations in the spatial domain, our system expands or contracts the simulation space, then the flow is calculated by solving a minimization problem subject to the resized velocity field. Using our method, the user can easily create various animations from a single dataset calculated by fluid simulation.

Details

Database :
OpenAIRE
Journal :
SIGGRAPH Asia 2013 Technical Briefs
Accession number :
edsair.doi...........9f8ae3458cd84d8f37b09a03c6ce21d4
Full Text :
https://doi.org/10.1145/2542355.2542371