Back to Search Start Over

Evolution of the Local Structure in the Sol–Gel Synthesis of Fe3C Nanostructures

Authors :
Dean Fletcher
Matthew S Chambers
Joseph A. Hriljac
Zoe Schnepp
Dean S Keeble
Source :
Inorganic Chemistry. 60:7062-7069
Publication Year :
2021
Publisher :
American Chemical Society (ACS), 2021.

Abstract

The sol-gel synthesis of iron carbide (Fe3C) nanoparticles proceeds through multiple intermediate crystalline phases, including iron oxide (FeOx) and iron nitride (Fe3N). The control of particle size is challenging, and most methods produce polydisperse Fe3C nanoparticles of 20-100 nm in diameter. Given the wide range of applications of Fe3C nanoparticles, it is essential that we understand the evolution of the system during the synthesis. Here, we report an in situ synchrotron total scattering study of the formation of Fe3C from gelatin and iron nitrate sol-gel precursors. A pair distribution function analysis reveals a dramatic increase in local ordering between 300 and 350 °C, indicating rapid nucleation and growth of iron oxide nanoparticles. The oxide intermediate remains stable until the emergence of Fe3N at 600 °C. Structural refinement of the high-temperature data revealed local distortion of the NFe6 octahedra, resulting in a change in the twist angle suggestive of a carbonitride intermediate. This work demonstrates the importance of intermediate phases in controlling the particle size of a sol-gel product. It is also, to the best of our knowledge, the first example of in situ total scattering analysis of a sol-gel system.

Details

ISSN :
1520510X and 00201669
Volume :
60
Database :
OpenAIRE
Journal :
Inorganic Chemistry
Accession number :
edsair.doi...........9f82527c8e6dedc759d7ad23d6e810c9
Full Text :
https://doi.org/10.1021/acs.inorgchem.0c03692