Back to Search
Start Over
Defect-modulated thermal transport behavior of BAs under high pressure
- Source :
- Applied Physics Letters. 121:121902
- Publication Year :
- 2022
- Publisher :
- AIP Publishing, 2022.
-
Abstract
- Boron arsenide (BAs) is a covalent semiconductor with a theoretical intrinsic thermal conductivity approaching 1300 W/m K. The existence of defects not only limits the thermal conductivity of BAs significantly but also changes its pressure-dependent thermal transport behavior. Using both picosecond transient thermoreflectance and femtosecond time-domain thermoreflectance techniques, we observed a non-monotonic dependence of thermal conductivity on pressure. This trend is not caused by the pressure-modulated phonon–phonon scattering, which was predicted to only change the thermal conductivity by 10%–20%, but a result of several competing effects, including defect–phonon scattering and modification of structural defects under high pressure. Our findings reveal the complexity of the defect-modulated thermal behavior under pressure.
- Subjects :
- Physics and Astronomy (miscellaneous)
Subjects
Details
- ISSN :
- 10773118 and 00036951
- Volume :
- 121
- Database :
- OpenAIRE
- Journal :
- Applied Physics Letters
- Accession number :
- edsair.doi...........9eb987b45546b0163da090f0300593f0
- Full Text :
- https://doi.org/10.1063/5.0113007