Back to Search
Start Over
Semantic Role Labeling Using Maximum Entropy
- Source :
- Computational and Information Science ISBN: 9783540241270, CIS
- Publication Year :
- 2004
- Publisher :
- Springer Berlin Heidelberg, 2004.
-
Abstract
- In this paper, semantic role labeling is addressed. We formulate the problem as a classification task, in which the words of a sentence are assigned to semantic role classes using a classifier. The maximum entropy approach is applied to train the classifier, by using a large real corpus annotated with argument structures.
- Subjects :
- business.industry
Computer science
Maximum-entropy Markov model
Principle of maximum entropy
Computer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)
Pattern recognition
computer.software_genre
Information extraction
ComputingMethodologies_PATTERNRECOGNITION
Semantic role labeling
Artificial intelligence
business
computer
Classifier (UML)
Natural language processing
Sentence
Subjects
Details
- ISBN :
- 978-3-540-24127-0
- ISBNs :
- 9783540241270
- Database :
- OpenAIRE
- Journal :
- Computational and Information Science ISBN: 9783540241270, CIS
- Accession number :
- edsair.doi...........9eb27cbc0652994c151f740d7ac01cad
- Full Text :
- https://doi.org/10.1007/978-3-540-30497-5_147