Back to Search
Start Over
Moderate Pressure Stabilized Pentazolate Cyclo-N5– Anion in Zn(N5)2 Salt
- Source :
- Inorganic Chemistry. 59:8002-8012
- Publication Year :
- 2020
- Publisher :
- American Chemical Society (ACS), 2020.
-
Abstract
- Stabilization of the pentazole anion only by acidic circumstances entrapment impedes the realization of a full-nitrogen substance; however, compression of nitrogen-rich nitrides has been recommend as an alternative way that has more controllable advantages to acquire the atomic nitrogen states. Through the structure searches are in conjunction with first-principle calculations, moderate pressure stabilized nitrogen-rich zinc nitrides with abundant extended nitrogen structures, e.g., cyclo-N5, infinite -(N4)n- chains, three-point stars N(N3), and N2 dumbbells, are predicted. The resonance between alternating σ bonds and π bonds in poly nitrogen sublattices takes charge of the coexistence of single and double bonds. The Zn(N5)2 salt has a noteworthy energy density (6.57 kJ/g) among the reported binary metal nitrides and synthesized pentazolate hydrates. An excellent Vicker's hardness (34 GPa) and detonation performance is unraveled. Although Zn(N5)2 salt is not expected to be recoverable at ambient conditions, it is worth noting that Zn(N5)2 is found to be stable at a very low pressure of ∼30 GPa, which is only half of those pressures required to synthesize CsN5. We clarified that the metal-centering octahedral pentazolate framework was entrapped by dual ionic-covalent bonds. More importantly, the covalent bonding can effectively enhance the chemical insensitivity and thermal stability, further preventing the autodecomposition of monatomic solid N5- anions into dinitrogen. Meanwhile, a unique topological pseudogap that attached to a metastable phase of ZnN4 salt is exposed for the first time, due to the dual effects of strong covalent sp2 hybridization interaction and the origin of ionic states.
- Subjects :
- chemistry.chemical_classification
Double bond
010405 organic chemistry
Chemistry
Pentazole
Ionic bonding
010402 general chemistry
Resonance (chemistry)
01 natural sciences
0104 chemical sciences
Ion
Inorganic Chemistry
chemistry.chemical_compound
Crystallography
Covalent bond
Phase (matter)
Thermal stability
Physical and Theoretical Chemistry
Subjects
Details
- ISSN :
- 1520510X and 00201669
- Volume :
- 59
- Database :
- OpenAIRE
- Journal :
- Inorganic Chemistry
- Accession number :
- edsair.doi...........9eb04547e8fc45f38fb547aeffbfad6d