Back to Search
Start Over
Explaining Causal Findings Without Bias: Detecting and Assessing Direct Effects
- Source :
- American Political Science Review. 110:512-529
- Publication Year :
- 2016
- Publisher :
- Cambridge University Press (CUP), 2016.
-
Abstract
- Researchers seeking to establish causal relationships frequently control for variables on the purported causal pathway, checking whether the original treatment effect then disappears. Unfortunately, this common approach may lead to biased estimates. In this article, we show that the bias can be avoided by focusing on a quantity of interest called the controlled direct effect. Under certain conditions, the controlled direct effect enables researchers to rule out competing explanations—an important objective for political scientists. To estimate the controlled direct effect without bias, we describe an easy-to-implement estimation strategy from the biostatistics literature. We extend this approach by deriving a consistent variance estimator and demonstrating how to conduct a sensitivity analysis. Two examples—one on ethnic fractionalization’s effect on civil war and one on the impact of historical plough use on contemporary female political participation—illustrate the framework and methodology.
- Subjects :
- Estimation
Sociology and Political Science
Fractionalization
05 social sciences
Direct effects
Estimator
Variance (accounting)
0506 political science
0502 economics and business
Political Science and International Relations
050602 political science & public administration
Econometrics
Treatment effect
050207 economics
Biostatistics
Control (linguistics)
Psychology
Subjects
Details
- ISSN :
- 15375943 and 00030554
- Volume :
- 110
- Database :
- OpenAIRE
- Journal :
- American Political Science Review
- Accession number :
- edsair.doi...........9da70af03d7a166a27dafd518d28b40b
- Full Text :
- https://doi.org/10.1017/s0003055416000216