Back to Search Start Over

Effectiveness, Explainability and Reliability of Machine Meta-Learning Methods for Predicting Mortality in Patients with COVID-19: Results of the Brazilian COVID-19 Registry

Authors :
Polianna Delfino-Pereira
Cláudio Moisés Valiense De Andrade
Virginia Mara Reis Gomes
Maria Clara Pontello Barbosa Lima
Maira Viana Rego Souza-Silva
Marcelo Carneiro
Karina Paula Medeiros Prado Martins
Thaís Lorenna Souza Sales
Rafael Lima Rodrigues De Carvalho
Magda Carvalho Pires
Lucas Emanuel Ferreira Ramos
Rafael T Silva
Adriana Falangola Benjamin Bezerra
Alexandre Vargas Schwarzbold
Aline Gabrielle Sousa Nunes
Amanda de Oliveira Maurilio
Ana Luiza Bahia Alves Scotton
André Soares de Moura Costa
Andriele Abreu Castro
Bárbara Lopes Farace
Christiane Corrêa Rodrigues Cimini
Cíntia Alcântara De Carvalho
Daniel Vitorio Silveira
Daniela Ponce
Elayne Crestani Pereira
Euler Roberto Fernandes Manenti
Evelin Paola de Almeida Cenci
Fernanda Barbosa Lucas
Fernanda d’Athayde Rodrigues
Fernando Anschau
Fernando Antônio Botoni
Fernando Graça Aranha
Frederico Bartolazzi
Gisele Alsina Nader Bastos
Giovanna Grunewald Vietta
Guilherme Fagundes Nascimento
Helena Carolina Noal
Helena Duani
Heloísa Reniers Vianna
Henrique Cerqueira Guimarães
Isabela Moraes Gomes
Jamille Hemerito Salles Martins Costa
Jessica Rayane Corrêa Silva Da Fonseca
Júlia Di Sabatino Santos Guimarães
Júlia Drumond Parreiras De Morais
Juliana Machado Rugolo
Joanna d’Arc Lyra Batista
Joice Coutinho De Alvarenga
José Miguel Chatkin
Karen Brasil Ruschel
Leila Beltrami Moreira
Leonardo Seixas De Oliveira
Liege Barella Zandona
Lilian Santos Pinheiro
Luanna da Silva Monteiro
Lucas de Deus Sousa
Luciane Kopittke
Luciano de Souza Viana
Luís César De Castro
Luísa Argolo Assis
Luísa Elem Almeida Santos
Maderson Álvares de Souza Cabral
Magda Cesar Raposo
Maiara Anschau Floriani
Maria Angélica Pires Ferreira
Maria Aparecida Camargos Bicalho
Mariana Frizzo De Godoy
Matheus Carvalho Alves Nogueira
Meire Pereira De Figueiredo
Milton Henriques Guimarães Júnior
Monica Aparecida de Paula De Sordi
Natália da Cunha Severino Sampaio
Neimy Ramos De Oliveira
Pedro Ledic Assaf
Raquel Lutkmeier
Reginaldo Aparecido Valacio
Renan Goulart Finger
Rochele Mosmann Menezes
Rufino de Freitas Silva
Saionara Cristina Francisco
Silvana Mangeon Meireles Guimaraes
Silvia Ferreira Araujo
Talita Fischer Oliveira
Tatiana Kurtz
Tatiana Oliveira Fereguetti
Thainara Conceição De Oliveira
Túlio Henrique Oliveira Diniz
Yara Cristina Neves Marques Barbosa Ribeiro
Yuri Carlotto Ramires
Marcos André Gonçalves
Milena Soriano Marcolino
Bruno Barbosa Miranda de Paiva
Publication Year :
2022
Publisher :
Research Square Platform LLC, 2022.

Abstract

The majority prognostic scores proposed for early assessment of coronavirus disease 19 (COVID-19) patients are bounded by methodological flaws. Our group recently developed a new risk score - ABC2SPH - using traditional statistical methods (least absolute shrinkage and selection operator logistic regression - LASSO). In this article, we provide a thorough comparative study between modern machine learning (ML) methods and state-of-the-art statistical methods, represented by ABC2SPH, in the task of predicting in-hospital mortality in COVID-19 patients using data upon hospital admission. We overcome methodological and technological issues found in previous similar studies, while exploring a large sample (5,032 patients). Additionally, we take advantage of a large and diverse set of methods and investigate the effectiveness of applying meta-learning, more specifically Stacking, in order to combine the methods' strengths and overcome their limitations. In our experiments, our Stacking solutions improved over previous state-of-the-art by more than 26% in predicting death, achieving 87.1% of AUROC and MacroF1 of 73.9%. We also investigated issues related to the interpretability and reliability of the predictions produced by the most effective ML methods. Finally, we discuss the adequacy of AUROC as an evaluation metric for highly imbalanced and skewed datasets commonly found in health-related problems.

Details

Database :
OpenAIRE
Accession number :
edsair.doi...........9cb4f6970bb48d25a86b620d19a4e59b
Full Text :
https://doi.org/10.21203/rs.3.rs-1164411/v1