Back to Search
Start Over
Results of NSTX Heating Experiments
- Publication Year :
- 2002
- Publisher :
- Office of Scientific and Technical Information (OSTI), 2002.
-
Abstract
- The National Spherical Torus Experiment (NSTX) at Princeton is designed to assess the potential of the low-aspect-ratio spherical torus concept for magnetic plasma confinement. The plasma has been heated by up to 5 MW of neutral beam injection, NBI, at an injection energy of 90 keV and up to 6 MW of high harmonic fast wave, HHFW, at 30 MHz. NSTX has achieved beta T of 32%. A variety of MHD phenomena have been observed to limit eta. NSTX has now begun addressing E scaling, eta limits and current drive issues. During the NBI heating experiments, a broad Ti profile with Ti up to 2 keV, Ti > Te and a large toroidal rotation. Transport analysis suggests that the impurity ions have diffusivities approaching neoclassical. For L-Mode plasmas, E is up to two times the ITER-89P L-Mode scaling and exceeds the ITER-98pby2 H-Mode scaling in some cases. Transitions to H-Mode have been observed which result in an approximate doubling of tE. after the transition in some conditions. During HH FW heating, Te > Ti and Te up to 3.5 keV were observed. Current drive has been studied using coaxial helicity injection (CHI), which has produced 390 kA of toroidal current and HHFW, which has produced H-modes with significant bootstrap current fraction at low Ip, high q and high{sub etap}.
Details
- Database :
- OpenAIRE
- Accession number :
- edsair.doi...........9bfc18b375a24cb93d9f075df7699cd2