Back to Search Start Over

Unified Hybridization of Discontinuous Galerkin, Mixed, and Continuous Galerkin Methods for Second Order Elliptic Problems

Authors :
Bernardo Cockburn
Raytcho D. Lazarov
Jayadeep Gopalakrishnan
Source :
SIAM Journal on Numerical Analysis. 47:1319-1365
Publication Year :
2009
Publisher :
Society for Industrial & Applied Mathematics (SIAM), 2009.

Abstract

We introduce a unifying framework for hybridization of finite element methods for second order elliptic problems. The methods fitting in the framework are a general class of mixed-dual finite element methods including hybridized mixed, continuous Galerkin, nonconforming, and a new, wide class of hybridizable discontinuous Galerkin methods. The distinctive feature of the methods in this framework is that the only globally coupled degrees of freedom are those of an approximation of the solution defined only on the boundaries of the elements. Since the associated matrix is sparse, symmetric, and positive definite, these methods can be efficiently implemented. Moreover, the framework allows, in a single implementation, the use of different methods in different elements or subdomains of the computational domain, which are then automatically coupled. Finally, the framework brings about a new point of view, thanks to which it is possible to see how to devise novel methods displaying very localized and simple mortaring techniques, as well as methods permitting an even further reduction of the number of globally coupled degrees of freedom.

Details

ISSN :
10957170 and 00361429
Volume :
47
Database :
OpenAIRE
Journal :
SIAM Journal on Numerical Analysis
Accession number :
edsair.doi...........9bd855cc99bef8526070b5e1b92b6242