Back to Search
Start Over
Notes on the $$\textit{spt}$$ spt function of George E. Andrews
- Source :
- The Ramanujan Journal. 38:17-34
- Publication Year :
- 2014
- Publisher :
- Springer Science and Business Media LLC, 2014.
-
Abstract
- Andrews defined $$\textit{spt}(n)$$ to be the total number of appearances of the smallest parts in all of the partitions of $$n$$ . In this paper, we study the statistical distribution of $$\textit{spt}(\pi )$$ , the number of smallest parts in the partition $$\pi $$ as $$\pi $$ ranges over all partitions of $$n$$ . We also give a combinatorial proof of a conjecture of Hirschhorn, namely that $$\begin{aligned} p(0)+\ \cdots \ +p(n-1)1$$ , where $$p(n)$$ is the number of partitions of $$n$$ .
Details
- ISSN :
- 15729303 and 13824090
- Volume :
- 38
- Database :
- OpenAIRE
- Journal :
- The Ramanujan Journal
- Accession number :
- edsair.doi...........9b93f91f4519de4baf3df429ffb63acb
- Full Text :
- https://doi.org/10.1007/s11139-013-9554-3