Back to Search Start Over

Notes on the $$\textit{spt}$$ spt function of George E. Andrews

Authors :
Dennis Eichhorn
Michael D. Hirschhorn
Source :
The Ramanujan Journal. 38:17-34
Publication Year :
2014
Publisher :
Springer Science and Business Media LLC, 2014.

Abstract

Andrews defined $$\textit{spt}(n)$$ to be the total number of appearances of the smallest parts in all of the partitions of $$n$$ . In this paper, we study the statistical distribution of $$\textit{spt}(\pi )$$ , the number of smallest parts in the partition $$\pi $$ as $$\pi $$ ranges over all partitions of $$n$$ . We also give a combinatorial proof of a conjecture of Hirschhorn, namely that $$\begin{aligned} p(0)+\ \cdots \ +p(n-1)1$$ , where $$p(n)$$ is the number of partitions of $$n$$ .

Details

ISSN :
15729303 and 13824090
Volume :
38
Database :
OpenAIRE
Journal :
The Ramanujan Journal
Accession number :
edsair.doi...........9b93f91f4519de4baf3df429ffb63acb
Full Text :
https://doi.org/10.1007/s11139-013-9554-3