Back to Search Start Over

Active tamper detection circuit based on the analysis of pulse response in conductive mesh

Authors :
Daniel-Ciprian Vasile
Norocel Codreanu
Mariana Safta
Paul Svasta
Source :
2017 40th International Spring Seminar on Electronics Technology (ISSE).
Publication Year :
2017
Publisher :
IEEE, 2017.

Abstract

Tamper detection circuits provide the first and most important defensive wall in protecting electronic modules containing security data. A widely used procedure is to cover the entire module with a foil containing fine conductive mesh, which detects intrusion attempts. Detection circuits are further classified as passive or active. Passive circuits have the advantage of low power consumption, however they are unable to detect small variations in the conductive mesh parameters. Since modern tools provide an upper leverage over the passive method, the most efficient way to protect security modules is thus to use active circuits. The active tamper detection circuits are typically probing the conductive mesh with short pulses, analyzing its response in terms of delay and shape. The method proposed in this paper generates short pulses at one end of the mesh and analyzes the response at the other end. Apart from measuring pulse delay, the analysis includes a frequency domain characterization of the system, determining whether there has been an intrusion or not, by comparing it to a reference (un-tampered with) spectrum. The novelty of this design is the combined analysis, in time and frequency domains, of the small variations in mesh characteristic parameters.

Details

Database :
OpenAIRE
Journal :
2017 40th International Spring Seminar on Electronics Technology (ISSE)
Accession number :
edsair.doi...........9b11fa6977026acd61e8af4a492a33d7
Full Text :
https://doi.org/10.1109/isse.2017.8000987