Back to Search Start Over

Comparing deep learning models for population screening using chest radiography

Authors :
Sema Candemir
Zhiyun Xue
Marc D. Kohli
R. Sivaramakrishnan
George R. Thoma
Philip Alderson
Sameer Antani
Joseph Abuya
Source :
Medical Imaging: Computer-Aided Diagnosis
Publication Year :
2018
Publisher :
SPIE, 2018.

Abstract

According to the World Health Organization (WHO), tuberculosis (TB) remains the most deadly infectious disease in the world. In a 2015 global annual TB report, 1.5 million TB related deaths were reported. The conditions worsened in 2016 with 1.7 million reported deaths and more than 10 million people infected with the disease. Analysis of frontal chest X-rays (CXR) is one of the most popular methods for initial TB screening, however, the method is impacted by the lack of experts for screening chest radiographs. Computer-aided diagnosis (CADx) tools have gained significance because they reduce the human burden in screening and diagnosis, particularly in countries that lack substantial radiology services. State-of-the-art CADx software typically is based on machine learning (ML) approaches that use hand-engineered features, demanding expertise in analyzing the input variances and accounting for the changes in size, background, angle, and position of the region of interest (ROI) on the underlying medical imagery. More automatic Deep Learning (DL) tools have demonstrated promising results in a wide range of ML applications. Convolutional Neural Networks (CNN), a class of DL models, have gained research prominence in image classification, detection, and localization tasks because they are highly scalable and deliver superior results with end-to-end feature extraction and classification. In this study, we evaluated the performance of CNN based DL models for population screening using frontal CXRs. The results demonstrate that pre-trained CNNs are a promising feature extracting tool for medical imagery including the automated diagnosis of TB from chest radiographs but emphasize the importance of large data sets for the most accurate classification.

Details

Database :
OpenAIRE
Journal :
Medical Imaging 2018: Computer-Aided Diagnosis
Accession number :
edsair.doi...........9afe7d44a128b3723aa9444c9b38d2ef
Full Text :
https://doi.org/10.1117/12.2293140