Back to Search
Start Over
Comparing deep learning models for population screening using chest radiography
- Source :
- Medical Imaging: Computer-Aided Diagnosis
- Publication Year :
- 2018
- Publisher :
- SPIE, 2018.
-
Abstract
- According to the World Health Organization (WHO), tuberculosis (TB) remains the most deadly infectious disease in the world. In a 2015 global annual TB report, 1.5 million TB related deaths were reported. The conditions worsened in 2016 with 1.7 million reported deaths and more than 10 million people infected with the disease. Analysis of frontal chest X-rays (CXR) is one of the most popular methods for initial TB screening, however, the method is impacted by the lack of experts for screening chest radiographs. Computer-aided diagnosis (CADx) tools have gained significance because they reduce the human burden in screening and diagnosis, particularly in countries that lack substantial radiology services. State-of-the-art CADx software typically is based on machine learning (ML) approaches that use hand-engineered features, demanding expertise in analyzing the input variances and accounting for the changes in size, background, angle, and position of the region of interest (ROI) on the underlying medical imagery. More automatic Deep Learning (DL) tools have demonstrated promising results in a wide range of ML applications. Convolutional Neural Networks (CNN), a class of DL models, have gained research prominence in image classification, detection, and localization tasks because they are highly scalable and deliver superior results with end-to-end feature extraction and classification. In this study, we evaluated the performance of CNN based DL models for population screening using frontal CXRs. The results demonstrate that pre-trained CNNs are a promising feature extracting tool for medical imagery including the automated diagnosis of TB from chest radiographs but emphasize the importance of large data sets for the most accurate classification.
- Subjects :
- medicine.medical_specialty
Tuberculosis
medicine.diagnostic_test
Contextual image classification
business.industry
Computer science
Radiography
Deep learning
Feature extraction
02 engineering and technology
medicine.disease
Convolutional neural network
030218 nuclear medicine & medical imaging
03 medical and health sciences
0302 clinical medicine
Region of interest
0202 electrical engineering, electronic engineering, information engineering
medicine
020201 artificial intelligence & image processing
Medical physics
Artificial intelligence
business
Chest radiograph
Subjects
Details
- Database :
- OpenAIRE
- Journal :
- Medical Imaging 2018: Computer-Aided Diagnosis
- Accession number :
- edsair.doi...........9afe7d44a128b3723aa9444c9b38d2ef
- Full Text :
- https://doi.org/10.1117/12.2293140