Back to Search
Start Over
Switching Frequency Dynamic Control for DFIG Wind Turbine Performance Improvement Around Synchronous Speed
- Source :
- IEEE Transactions on Power Electronics. 32:7271-7283
- Publication Year :
- 2017
- Publisher :
- Institute of Electrical and Electronics Engineers (IEEE), 2017.
-
Abstract
- In a doubly-fed induction generator (DFIG) wind turbine (WT), large thermal and mechanical oscillations occur around synchronous speed due to the nearly zero-frequency current circulating between rotor windings and rotor-side converter (RSC). A switching frequency dynamic control technique is proposed in this paper to overcome the problem. The basic idea is to dynamically reduce the switching frequency during operation so that both the switching losses and dead-time effect of RSC can be reduced around synchronous speed. According to the characteristic that high-frequency pulse width modulation (PWM) harmonics in DFIG decrease significantly with rotor slip, there would be a new space for switching frequency reduction especially around synchronous speed. The reduced of switching frequency is actually determined by a tradeoff between the increase of both the stator current PWM harmonics and speed PWM ripples and the decrease of insulated-gate bipolar transistor temperature. Compared with the conventional technique with constant switching frequency, the new technique can effectively improve the system performance around synchronous speed including not only better thermal behavior and efficiency of RSC but also smaller current total harmonics and speed total ripples in generator. To clarify the method, first, the effects of switching frequency reduction on a DFIG WT system are investigated. Second, the criteria, control scheme, and procedure of the method are presented. Finally, experimental and simulation studies were carried out, and the results validate its feasibility and effectiveness.
- Subjects :
- 010302 applied physics
Engineering
Stator
Rotor (electric)
business.industry
020208 electrical & electronic engineering
Induction generator
02 engineering and technology
01 natural sciences
Turbine
law.invention
Harmonic analysis
law
Control theory
Harmonics
0103 physical sciences
0202 electrical engineering, electronic engineering, information engineering
Electronic engineering
Electrical and Electronic Engineering
Synchronous motor
business
Pulse-width modulation
Subjects
Details
- ISSN :
- 19410107 and 08858993
- Volume :
- 32
- Database :
- OpenAIRE
- Journal :
- IEEE Transactions on Power Electronics
- Accession number :
- edsair.doi...........9a0457f39ec94295ccc7f98fb3713dde