Back to Search
Start Over
CO2 methanation over nickel-ZrO2 catalyst supported on carbon nanotubes: A comparison between two impregnation strategies
- Source :
- Applied Catalysis B: Environmental. 237:817-825
- Publication Year :
- 2018
- Publisher :
- Elsevier BV, 2018.
-
Abstract
- Ni-ZrO2 catalysts supported on CNT synthesized by sequential and co-impregnation were tested in the CO2 methanation reaction. The catalysts were characterized using different physico-chemical techniques including BET surface area analysis, TGA, H2-TPR analysis, CO2-TPD analysis, XRD analysis, TEM-EDS analysis and XPS. Both samples were found to be active in the CO2 methanation; however, the catalyst prepared by co-impregnation was notably less active and selective to CH4 than the catalyst synthesized by sequential impregnation method. The characterization results gave significant insight on the disposition of active phases in CNT surface. The catalyst prepared by co-impregnation showed NiO nanoparticles surrounded by ZrO2 in core-shell structures that growth over the CNT, reducing reactant access to Ni and Ni – ZrO2 interface. Additionally, TEM analysis of this catalyst prepared by sequential impregnation showed NiO nanoparticles available and deposited either on the surface or next to the ZrO2 nanoparticles, increasing the extent of the Ni – ZrO2 interface thus improving the catalytic performance.
- Subjects :
- Materials science
Process Chemistry and Technology
chemistry.chemical_element
02 engineering and technology
Carbon nanotube
010402 general chemistry
021001 nanoscience & nanotechnology
01 natural sciences
Catalysis
0104 chemical sciences
law.invention
Nickel
chemistry
Chemical engineering
X-ray photoelectron spectroscopy
law
Methanation
Nio nanoparticles
Cubic zirconia
0210 nano-technology
General Environmental Science
BET theory
Subjects
Details
- ISSN :
- 09263373
- Volume :
- 237
- Database :
- OpenAIRE
- Journal :
- Applied Catalysis B: Environmental
- Accession number :
- edsair.doi...........993fb4537a99becb91b1f12bba4221bb
- Full Text :
- https://doi.org/10.1016/j.apcatb.2018.06.045