Back to Search
Start Over
Enhancing the coercivity of Nd-Fe-B sintered magnets by consecutive heat treatment–induced formation of Tb-diffused microstructures
- Source :
- Journal of Alloys and Compounds. 780:574-580
- Publication Year :
- 2019
- Publisher :
- Elsevier BV, 2019.
-
Abstract
- Herein, we probed the microstructure of Tb-diffused Nd-Fe-B magnets to investigate the relationship between Tb-diffused area and coercivity enhancement, employing prolonged stepwise heat treatment to ensure sufficient diffusion of Tb in relatively large-size magnets and revealing that this stepwise annealing generated core-shell structures. Quantitative compositional changes pertaining to individual phases of the multiphase system in each heat treatment process were analyzed by constructing ternary diagrams based on electron probe microanalysis compositional maps. During the grain boundary diffusion process, coercivity increased from 15.28 to 24.86 kOe, while only negligible remanence and energy product decreases were concomitantly observed. Microstructure analysis suggested that coercivity was closely related to the concentration and distribution of Tb; more precisely, the abovementioned core-shell structures successfully suppressed the nucleation of reverse domains at Nd-rich phase/main phase interfaces and therefore enhanced magnet coercivity without decreasing remanence and energy product.
- Subjects :
- Materials science
Condensed matter physics
Annealing (metallurgy)
Mechanical Engineering
Metals and Alloys
Nucleation
02 engineering and technology
Coercivity
010402 general chemistry
021001 nanoscience & nanotechnology
Microstructure
01 natural sciences
0104 chemical sciences
Mechanics of Materials
Remanence
Sintered magnets
Magnet
Materials Chemistry
Grain boundary diffusion coefficient
0210 nano-technology
Subjects
Details
- ISSN :
- 09258388
- Volume :
- 780
- Database :
- OpenAIRE
- Journal :
- Journal of Alloys and Compounds
- Accession number :
- edsair.doi...........989f49b726515b7a12298eedd2c54aba
- Full Text :
- https://doi.org/10.1016/j.jallcom.2018.11.412