Back to Search
Start Over
On a paper of Dressler and Van de Lune
- Source :
- Boletín de la Sociedad Matemática Mexicana. 26:831-839
- Publication Year :
- 2020
- Publisher :
- Springer Science and Business Media LLC, 2020.
-
Abstract
- If $$z\in {\mathbb {C}}$$ and $$1\le n$$ is a natural number then $$\begin{aligned} \sum _{d_1 d_2 =n} (1-z^{p_1})\cdots (1-z^{p_m}) z^{q_1 e_{1}+\cdots +q_i e_{i} }=1, \end{aligned}$$ where $$d_1=p_1^{r_1}\dots p_m^{r_m }$$ , $$d_2=q_1^{e_1}\dots q_i^{e_i }$$ are the prime decompositions of $$d_1, d_2$$ . This is one of the identities involving arithmetic functions that we prove using ideas from the paper of Dressler and van de Lune [3].
Details
- ISSN :
- 22964495 and 1405213X
- Volume :
- 26
- Database :
- OpenAIRE
- Journal :
- BoletÃn de la Sociedad Matemática Mexicana
- Accession number :
- edsair.doi...........989e69f4f84f3c99b89ed350c39a1b74