Back to Search Start Over

3D Printed Biomaterials and their Scaffolds for Biomedical Engineering

Authors :
Rabail Zehra Raza
Arun Kumar Jaiswal
Muhammad Faheem
Sandeep Tiwari
Raees Khan
Siomar de Castro Soares
Asmat Ullah Khan
Vasco Azevedo
Syed Babar Jamal
Source :
Biomaterial Fabrication Techniques ISBN: 9789815050479
Publication Year :
2022
Publisher :
BENTHAM SCIENCE PUBLISHERS, 2022.

Abstract

Over the past decade, three-dimensional printing (3DP) has gained popularity among the public and the scientific community in a variety of disciplines, including engineering, medicine, manufacturing arts, and, more recently, education. The advantage of this technology is that it is capable of designing and printing almost any object shape using various materials such as ceramics, polymers, metals and bio.inks. This has further favored the use of this technology for biomedical applications in both clinical and research settings. In biomedicine, there has been a remarkable development of a variety of biomaterials, which in turn has accelerated the significant role of this technology as synthetic scaffolds in various forms such as scaffolds, constructs or matrices. In this chapter, we would like to review the trailblazing literature on the application of 3DP technology in biomedical engineering. This chapter focuses on various 3DP techniques and biomaterials for tissue engineering applications (TE). 3DP technology has a variety of applications in biomedicine and TE (B- TE). Customized structures for B- TE applications using 3DP have several advantages, e.g., they are easy to fabricate and are inexpensive. On the other hand, conventional technologies, which are costly, time-consuming, and labor intensive, are generally not compatible with 3DP. Therefore, the capabilities of 3DP, which is a novel fabrication technology, need to be explored for many other potential applications. Here, we provide a comprehensive overview of the different types of 3DP technologies and how they can potentially be used.

Details

ISBN :
978-981-5050-47-9
ISBNs :
9789815050479
Database :
OpenAIRE
Journal :
Biomaterial Fabrication Techniques ISBN: 9789815050479
Accession number :
edsair.doi...........9876744237beae5d865246f6eb3d2d7a
Full Text :
https://doi.org/10.2174/9789815050479122010009