Back to Search Start Over

Compositional optimizations for CertiCoq

Authors :
John M. Li
Zoe Paraskevopoulou
Andrew W. Appel
Source :
Proceedings of the ACM on Programming Languages. 5:1-30
Publication Year :
2021
Publisher :
Association for Computing Machinery (ACM), 2021.

Abstract

Compositional compiler verification is a difficult problem that focuses on separate compilation of program components with possibly different verified compilers. Logical relations are widely used in proving correctness of program transformations in higher-order languages; however, they do not scale to compositional verification of multi-pass compilers due to their lack of transitivity. The only known technique to apply to compositional verification of multi-pass compilers for higher-order languages is parametric inter-language simulations (PILS), which is however significantly more complicated than traditional proof techniques for compiler correctness. In this paper, we present a novel verification framework for lightweight compositional compiler correctness . We demonstrate that by imposing the additional restriction that program components are compiled by pipelines that go through the same sequence of intermediate representations , logical relation proofs can be transitively composed in order to derive an end-to-end compositional specification for multi-pass compiler pipelines. Unlike traditional logical-relation frameworks, our framework supports divergence preservation—even when transformations reduce the number of program steps. We achieve this by parameterizing our logical relations with a pair of relational invariants . We apply this technique to verify a multi-pass, optimizing middle-end pipeline for CertiCoq, a compiler from Gallina (Coq’s specification language) to C. The pipeline optimizes and closure-converts an untyped functional intermediate language (ANF or CPS) to a subset of that language without nested functions, which can be easily code-generated to low-level languages. Notably, our pipeline performs more complex closure-allocation optimizations than the state of the art in verified compilation. Using our novel verification framework, we prove an end-to-end theorem for our pipeline that covers both termination and divergence and applies to whole-program and separate compilation, even when different modules are compiled with different optimizations. Our results are mechanized in the Coq proof assistant.

Details

ISSN :
24751421
Volume :
5
Database :
OpenAIRE
Journal :
Proceedings of the ACM on Programming Languages
Accession number :
edsair.doi...........982ce6d568ede8dec7b22170fa9b7e17