Back to Search Start Over

Growth and characterization of continuously graded index separate confinement heterostructure (GRIN-SCH) InGaAs-InP long wavelength strained layer quantum-well lasers by metalorganic vapor phase epitaxy

Authors :
Henryk Temkin
N.A. Olsson
Ralph A. Logan
Steven Chu
K.W. Wecht
A.M. Sergent
T. Tanbun-Ek
Source :
IEEE Journal of Quantum Electronics. 26:1323-1327
Publication Year :
1990
Publisher :
Institute of Electrical and Electronics Engineers (IEEE), 1990.

Abstract

A report is presented on the growth and characterization of the first InGaAs-InP-based graded-index separate-confinement-heterostructure (GRIN-SCH) strained quantum-well lasers operating near 1.47 mu m. The structure features linearly graded InGaAsP waveguide layers for both optical and carrier confinement in a very narrow, strained quantum-well layers. The excellent structural quality of the active and waveguide regions has been confirmed by transmission electron microscopy (TEM) and secondary ion mass spectroscopy (SIMS) analysis results. Strained quantum-well lasers with well widths as narrow as 5-6 nm were fabricated with threshold current densities as low as 750 A/cm/sup 2/. Buried-heterostructure lasers based on strained quantum-well active lasers exhibit threshold currents as low as 10-15 mA with quantum efficiency of 70-80%. With antireflection coating on one side of the sample, the laser shows threshold current of 35 mA with highest output power of 160 mW. >

Details

ISSN :
00189197
Volume :
26
Database :
OpenAIRE
Journal :
IEEE Journal of Quantum Electronics
Accession number :
edsair.doi...........97ef36ab0d34945180b9a3c41ad9c0e4