Back to Search Start Over

Probability measures in 𝑊*𝐽-algebras in Hilbert spaces with conjugation

Authors :
Marjan Matvejchuk
Source :
Proceedings of the American Mathematical Society. 126:1155-1164
Publication Year :
1998
Publisher :
American Mathematical Society (AMS), 1998.

Abstract

Let M \mathcal {M} be a real W ∗ W^{*} -algebra of J J -real bounded operators containing no central summand of type I 2 I_{2} in a complex Hilbert space H H with conjugation J J . Denote by P P the quantum logic of all J J -orthogonal projections in the von Neumann algebra N = M + i M {\mathcal {N}}={\mathcal {M}}+ i{\mathcal {M}} . Let μ : P → [ 0 , 1 ] \mu :P\rightarrow [0,1] be a probability measure. It is shown that N \mathcal {N} contains a finite central summand and there exists a normal finite trace τ \tau on N \mathcal {N} such that μ ( p ) = τ ( p ) \mu (p)=\tau (p) , ∀ p ∈ P \forall p\in P .

Details

ISSN :
10886826 and 00029939
Volume :
126
Database :
OpenAIRE
Journal :
Proceedings of the American Mathematical Society
Accession number :
edsair.doi...........97b2ae2c822375d048ef37f69d445fdb
Full Text :
https://doi.org/10.1090/s0002-9939-98-04176-8