Back to Search Start Over

Quantum wire heterostructure for optoelectronic applications

Authors :
G. H. Song
Eli Kapon
Dieter Bimberg
E. Colas
M. Walther
Jürgen Christen
Rajaram Bhat
D. M. Hwang
C. Caneau
Marius Grundmann
Source :
Superlattices and Microstructures. 12:491-499
Publication Year :
1992
Publisher :
Elsevier BV, 1992.

Abstract

Quantum wire (QWR) heterostructures suitable for optoelectronic applications should meet a number of requirements, including defect free interfaces, large subband separation, long carrier lifetime, efficient carrier capture. The structural and opticl properties of GaAs/AlGaAs and InGaAs/GaAs quantum wire (QWR) heterostructures grown by organometallic chemical vapor deposition on nonplanr substrates, which satisfy many of these criteria, are described. These crescent-shaped QWRs are formed in situ during epitaxial growth resulting in virtually defect free interfaces. Effective wire widths as small as ∼10nm have been achieved, corresponding to electron subband separations greater than KBT at room temperature. The enhanced density of states at the QWR subbands manifests itself in higher optical absorption and emission as visualized in photoluminescence (PL), PL excitation, amplified spontaneous emission and lasing spectra of these structures. Effective carrier capture into the wires via connected quantum well regions, which is important for enhancing the otherwise extremely small capture cross section of these wires, has also been observed. Room temperature operation of GaAs/AlGaAs and strained InGaAs/GaAs QWR lasers with threshold currents as low as 0.6mA has been demonstrated.

Details

ISSN :
07496036
Volume :
12
Database :
OpenAIRE
Journal :
Superlattices and Microstructures
Accession number :
edsair.doi...........977a0b8273a4b414ee25d1053365d50d
Full Text :
https://doi.org/10.1016/0749-6036(92)90307-q