Back to Search Start Over

Quasi-static and dynamic mechanical responses of hybrid laminated composites based on high-density flexible polyurethane foam

Authors :
Ching Wen Lou
Rui Wang
Jia-Horng Lin
Shih-Yu Huang
Ruosi Yan
Source :
Composites Part B: Engineering. 83:253-263
Publication Year :
2015
Publisher :
Elsevier BV, 2015.

Abstract

Hybrid laminated composites were fabricated based on high-density flexible polyurethane foam and reinforced with inter/intra-ply hybrid laminates. Transient responses of hybrid composites under quasi-static and dynamic loadings with various thicknesses and expansion factors were comparatively investigated. Experimental results revealed that foam cell collapse and hybrid laminates rupture were dominant mechanisms of energy absorption. Interlaminar stress and composite tensile strength determined the compressive potential energy and double-peak behavior. Quasi-static bursting and puncture resistances exhibited totally different relationships to various constructions and expansion factors. Energy dissipation capacity is influenced more significantly by the constant rate of transverse (CRT) puncture than dynamic puncture process. CRT puncture resistance is superior to the corresponding dynamic puncture resistance for all constructions. The hybrid laminated composites contributes to eliminate more than 95% of the incident force in the drop weight impact test. Compared with non-laminated panel, the hybrid laminated composites exhibited higher resistance to static and dynamic loadings.

Details

ISSN :
13598368
Volume :
83
Database :
OpenAIRE
Journal :
Composites Part B: Engineering
Accession number :
edsair.doi...........97042fdd860c16b7b01fc39b1435d037
Full Text :
https://doi.org/10.1016/j.compositesb.2015.08.037